
Into the Unknown: UAV Navigation with F-Star (F*)
Tobias Fischer∗†, Zubair Shaik∗, Andreas Mitschele-Thiel∗, and Florian Klingler∗†

∗Dept. of Computer Science and Automation, TU Ilmenau, Germany
†Chair of Computer Networks, Dept. of Computer Science, University of Bamberg, Germany

{zubair.shaik, andreas.mitschele-thiel}@tu-ilmenau.de

{tobias.fischer, florian.klingler}@uni-bamberg.de | www.uni-bamberg.de/comnet

Abstract—With increasing demand for flexible aerial systems,
Unmanned Aerial Vehicles (UAVs) have become central to
research in areas like emergency response, mobile networking, and
surveillance. Multirotor UAVs enable seamless movement in all
directions, but introduce challenges in localization, mapping, and
real-time path planning. Modern missions require more than basic
collision avoidance or shortest-path computation; they demand
energy-efficient, safe, and adaptive navigation. In networking
applications, additional constraints include restricted airspaces,
frequency zoning, radio silence mandates, and uplink visibility.
Although UAV path planning has been studied extensively, many
existing methods are computationally intensive. To address this, we
propose F-Star (F*), a framework that integrates adaptive spatial
partitioning, weighted graph search, and trajectory smoothing for
efficient and safe UAV navigation, while providing extensibility
for multi-objective planning. A preliminary study in realistic
scenarios demonstrates our proposed solutions effectiveness in
dynamic obstacle avoidance with low computational cost and
extensibility for multi-objective planning domains.

Index Terms—Navigation, Path planning, SLAM, Autonomous
vehicles, Obstacle avoidance

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) gained a lot of interest in
the past for various application domains ranging from automatic
delivery services in context of logistics, up to surveillance
and videography purposes. Among those, a very promising
use case for UAV based systems is networking support, e.g.,
using a UAV to carry networking equipment like small cell
basestations for supporting communication systems in remote
areas or disaster sites. For operation, these UAVs can use
terrestrial, or even satellite links, making it a viable option
due to the increasing popularity of Low Earth Orbit based
satellite systems. Furthermore, the simultaneous deployment of
multiple UAVs as mobile network nodes necessitates reliable
inter-node communication visibility.

To operate autonomously, UAVs rely on multiple algorithmic
components including collision avoidance, sensor data interpre-
tation, and fault detection. Yet, one of the most critical elements
in ensuring robust autonomous behavior is path planning –
computing a feasible and safe trajectory for the UAV from a
source location to one or multiple destination positions.

Many path planning algorithms simply aim to avoid static or
dynamic obstacles, prioritizing shortest-path efficiency [1]. In
the context of aerial robotics, this approach is often insufficient,
as flight introduces additional constraints such as aerodynamic
disturbances, limited energy availability, and three-dimensional
mobility, significantly increasing computational complexity [2].

Algorithms designed without consideration for air turbulence
in proximity to obstacles or the drone’s inertia may yield
unrealistic trajectories, possibly posing a risk in physical deploy-
ment. To address this, smooth and obstacle-buffered trajectories
are preferable, as they minimize jerk, extend flight time,
and improve robustness against environmental disturbances.
Additionally, UAVs in the context of network mobility – e.g.,
mobile base stations – demand multi-objective optimization,
including restricted aerospace zones, communication-related
constraints such as uplink visibility and allocated frequency
regions, and dynamic interference sources. These factors
transform the path planning problem into a high-dimensional
decision-making challenge.

As a first step toward a comprehensive multi-objective
planning framework, this paper presents the core architecture
and validation of a static and dynamic path planning system
for obstacle avoidance. We target a modular and extensible
system, enabling future integrations for addressing the complex
challenges introduced by multi-objective UAV operations in
network-aware aerial systems.

II. RELATED WORK AND FUNDAMENTALS

Ait Saadi et al. [1] explored different path planning solutions
for UAV applications. We evaluated their results for our
application of multi-objective planning in aerial networked
robotics, specifically mobile base stations. Their findings
conclude, that A-Star (A*) provides good solutions with fast
convergence but is ill-suited for multi-objective planning, while
Bi-Level Programming (BLP) seems to be the optimal approach
for such complex scenarios [1].

Liu et al. [3] claim, that their BLP based algorithm can be
applied to different kind of threats, by expressing those as
stochastic models. Due to concerns regarding the complexity
and suitability of BLP for our problem, we instead research
adapting the A* algorithm, as it serves as a strong baseline,
offering adequate performance and scalability [1].

Details on mapping structures for UAV path planning are
presented in Section III. Graph-based pathfinding algorithms
are discussed in Section IV, followed by trajectory smoothing
techniques in Section V. Our proposed approach, F-Star (F*),
is introduced in Section VI, highlighting key deviations from
existing methods. Finally, we evaluate our solution in synthetic
tests and simulations, which is outlined in Section VII.

© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

50th IEEE Conference on Local Computer Networks (LCN), Special Track on Autonomous Intelligence for Low-Altitude Economy

III. MAPPING IN ROBOTICS

UAV map representations can be broadly categorized into
two types:

• Metric maps use geometric information to place objects
within a defined coordinate space – in this case, the three-
dimensional volume in which a drone operates.

• Topological maps, by contrast, capture only the connec-
tivity or adjacency between discrete locations, forming
a graph of navigable routes without precise geometric
detail.

While topological maps are lightweight and efficient for
route computation, they lack spatial granularity, making them
unsuitable for tasks like dynamic obstacle avoidance. To address
this trade-off, we adopt a common hybrid approach, combining
high-resolution metric data for obstacle representation with
graph-based structures for efficient navigation planning [4].

A. Occupancy Grid Maps

A foundational method for representing spatial environments
is the occupancy grid map, which discretizes 3D space into
uniform cells arranged in a regular grid. These volumetric units,
known as voxels (volume pixels), are the three-dimensional
analog of image pixels and can be resized to control spatial
resolution. While uniform resolution simplifies processing,
storing different levels of detail within a single map would allow
for efficient representation of both dense and sparse regions,
albeit at the cost of increased complexity in map maintenance
and traversal [5]. The most basic implementation stores a binary
state – occupied or free – for each voxel. However, due to
sensor noise and uncertainty, probabilistic representations are
preferred in physical deployments.

In a probabilistic occupancy grid, each cell is initialized
with an intermediate occupancy probability value, indicating
unknown state. Subsequent sensor readings update this value:
detections of obstacles increment the occupancy probability,
while observations suggesting free space decrement it. [6]

One limitation of occupancy grids is the inefficiency of
Nearest-Neighbour Search (NNS). To locate the nearest ob-
stacle, the system must perform an expanding search in all
directions, a computationally expensive operation, especially in
3D environments. Adaptive resolution can improve efficiency,
but non-uniform voxel sizes introduce irregular neighbor
relationships that complicate traversal and path planning.
Nevertheless, occupancy grids remain popular in robotics due
to their intuitive structure and compatibility with topological
representations.

Graph-based planners can be overlaid by treating neighboring
voxels as connected nodes, with edge weights proportional to
Euclidean distances. Typical voxel neighborhood definitions in
three dimensions include shared faces (6-connectivity), edges
(18-connectivity), or corners (26-connectivity). While face-only
connectivity enhances safety by avoiding diagonal shortcuts,
including edges and corners expands the possible solution set
and can yield shorter paths.

(a) Visual Octree representation (b) Logical Octree representation

Figure 1: Representation of an Octree visually (left), with its
corresponding graph structure (right).

B. Octrees

Whereas occupancy grids represent a bottom-up discretiza-
tion of space, octrees offer a top-down, hierarchical approach
to space partitioning. Octrees, as visualized in Figure 1a,
recursively divide 3D space by evenly splitting a cube into
eight smaller sub-cubes, allowing for efficient representation
of heterogeneous environments. This structure extends the 2D
quadtree concept – where each square region can be divided
by splitting it evenly among both axes – into three dimensions.

A common approach to octree implementation uses a graph
structure internally, where every cube is represented by a graph
node, each having either zero or eight children referencing the
containing sub-cubes.

As subdivision is applied only in regions that require higher
detail, memory usage for uniform or unexplored areas is
decreased significantly in comparison to regular grid maps.
This adaptive resolution is especially valuable in outdoor UAV
applications, where large volumes of mostly free space are
punctuated by small obstacles.

Efficient Nearest-Neighbour Search (NNS) in octrees can
be achieved by recursively iterating over all nodes through
their child relationships. Using heuristics improves this process
by prioritizing traversal toward nodes closest to the query
point, and terminating early when an occupied leaf node is
encountered.

IV. GRAPH-BASED PATH PLANNING

Given is a topological map as a graph G = (V,E, c), where:
• V is a set of vertices,
• E ⊆ V × V a set of connecting edges and
• c : E → R+

0 a cost-function assigning non-negative
traversal cost to each edge.

Two commonly used distance functions in pathfinding are the
Manhattan distance (1) and the Euclidean distance (2), both
defined for n-dimensional spaces:

dManhattan(x, y) =
n∑

i=1

|xi − yi| (1)

dEuclidean(x, y) =

√√√√
n∑

i=1

(xi − yi)2 (2)

A simple path Pv,w in G with v, w ∈ V and v ̸= w, is defined
as a sequence of distinct vertices (v0, v1, . . . , vk), such that
v0 = v, vk = w, and ∀ i ∈ {1, 2, . . . , k} : (vi−1, vi) ∈ E.
Consequently, let Pv,w denote the set of all valid paths from
v to w in G. The path distance between two nodes vx, vy on
a path Pv,w is defined as the sum of the edge costs along that
sub-path and denoted as

dPv,w
(vx, vy) =

∑

(u,v)∈Pvx,vy

c(u, v) (3)

Therefore, the length of the full path is l(Pv,w) = dPv,w
(v, w).

Graph-based path planning defines the process of determining
the minimum of l(Ps,t) for all Ps,t ∈ Ps,t on a graph G,
with s, t ∈ V , finding the shortest path between the two.
Although edge cost often reflects geometric distance, we define
the shortest path as the least-cost path between two nodes
s, t ∈ V :

minpath(s, t) = arg min
Ps,t∈Ps,t

l(Ps,t) (4)

A. Dijkstra’s Algorithm and A*

Dijkstra’s Algorithm is one of the foundational approaches to
shortest-path search. Let us define a cost function for traversal
as c(n,m) = f(m) + d(n,m), where d(n,m) is the edge
weight (e.g., Euclidean distance), and f(m) is a path cost
estimate from s to m. Further, let g(n) denote the currently
known shortest-path cost from n to t: g(n) = minpath(n, t).

In the original formulation by Dijkstra [7], a uniform-cost
search with f(n) = g(n) is executed with a reversed direction,
expanding from the goal node t rather than the start node s,
which yields all shortest paths to t from any v ∈ V . This has
advantages in robotic scenarios where path deviation occurs:
rather than recomputing the entire path, the robot can resume
from the nearest segment of a precomputed tree.

The A* algorithm enhances Dijkstra’s method by introducing
a heuristic estimate: f(n) = g(n)+h(n), where h(n) estimates
the remaining cost from n to the goal t – commonly h(n) =
d(n, t) [8]. This converts the search into a best-first traversal,
allowing early termination once t is reached. According to
Hart et al. [8], if h(n) is admissible (i.e., never overestimates
the true cost), A* guarantees an optimal solution.

B. Safety focused A*

Yu et al. [9] modified A* for safety-critical applications by
adapting the heuristic to penalize proximity to obstacles. Their
2D formulation extends naturally to 3D.

Let dobst(n) denote the distance from node n to the nearest
obstacle, computed via a nearest-neighbor query in the map.
Following the recommendations provided by Yu et al. [9], a
safety-aware heuristic can be written as:

h(n) = d(n, t) +
100%

5 · dobst(n) + 1
(5)

This formulation increases the cost of nodes near obstacles,
effectively biasing the planner away from dangerous regions
without the necessity to prune the graph.

V. TRAJECTORY SMOOTHING

For some UAV systems – e.g Multirotor drones, movement in
any direction is theoretically possible at any time. However, to
optimize energy efficiency and improve fluidity, it is beneficial
to smooth the computed path to leverage the system’s inertia
and minimize abrupt direction changes.

A. Splines

Linear Interpolation (LERP) is a method to generate inter-
mediate points between two given positions, A and B, in a
vector space Rn, based on a parameter t ∈ [0, 1]. The resulting
point lies on the line segment connecting A and B:

LerpA,B(t) = (1− t) ·A+ t ·B = A+ t · (B −A) (6)

This linear interpolation forms the basis for constructing
more complex curves such as Bézier curves through recursive
applications.

B. Bézier Curves

Bézier curves provide a way to generate smooth trajectories
from a sequence of control points. A quadratic Bézier curve, for
example, interpolates three points A, B, and C by recursively
applying LERP:

LerpA,B,C(t) = (1− t) · LerpA,B(t) + t · LerpB,C(t)

= (1− t)2 ·A+ 2t · (1− t) ·B + t2 · C (7)

This recursive construction generalizes into the Bernstein form
for Bézier curves of arbitrary degree n, using De Casteljau’s
algorithm:

B(t) =

n∑

i=0

(
n

i

)
· (1− t)n−i · tipi (8)

With pi being the i-th control point in order (for A,B,C :
p0 = A, p1 = B, p2 = C). The binomial term is known as
the Bernstein basis polynomial and controls the influence of
each control point in relation to the input parameter t. Bézier
splines of degree n generate smooth curves between n control
points, visualized in Figure 2.

To retain local control and avoid over-smoothing with high-
degree curves, it is common to use piecewise cubic Bézier
curves (degree 3) with shared endpoints or tangent blending,
forming what is known as composite Bézier splines [10].

1. Linear 2. Quadratic 3. Cubic

Figure 2: Visualization of different order Bézier splines. More
control points result in a reduction in local control, meaning
each point has less influence on the final curve.

C. Catmull-Rom Splines

An alternative composite parametric curve are Catmull-Rom
splines, that interpolate the given control points directly, passing
through each one. They are defined using four sequential control
points A, B, C, D, and interpolate between B and C. Missing
points can be extrapolated by mirroring an existing point to the
other side of an adjacent control point. The matrix formulation
is:

f(t) =




1
t
t2

t3




T

·




0 1 0 0
−α 0 α 0
2α α− 3 3− 2α −α
−α 2− α α− 2 α


 ·




A
B
C
D


 (9)

Yuksel et al. [11] analyzed the behavior of Catmull-Rom splines,
when adjusting the spline tension α between 0 (uniform), 0.5
(centripetal), and 1 (chordal). This parameter influences how
tightly the curve follows the given control points, affecting both
smoothness and the likelihood of overshooting. Yuksel et al.
[11] observed, that centripetal splines offer good smoothing
results without deviating too far from the given curve, an
observation we could confirm during initial experimentation.

D. Moving Averages

Moving or rolling average smoothing is a simple yet effective
algorithm often used in signal processing. It operates by
averaging over a sliding window centered on each point in
the input sequence [12]. In our context, the input is a list of
waypoints forming a path, and the window defines a subset of
these points.

VI. OUR F* APPROACH:
SINGLE- AND MULTI-OBJECTIVE PLANNING

Inspired by the ideas from a safety focused A* approach
[9], in this section we propose our F* path finding approach,
which takes advantage of an improved cost function in favor
of removing nodes for optimized path planning.

A. Optimized Octree

To maintain neighborhood relations in the octree structure,
each node stores its neighbors directly, avoiding costly re-
computation during graph conversion. When a node splits, its
children are interconnected and linked to the original neighbors
that satisfy the 26-connectivity criterion. For consolidation of
child nodes to one parent cell – e.g. when all sub-cubes are
marked as free or occupied – all neighbors of all children are
added to the parent node. This recursive approach supports
dynamic updates efficiently, including root extension, without
reprocessing previous obstacles. During graph conversion,
only newly added, non-obstructed nodes are iterated over and
converted to graph vertices using the stored neighborhood data.

B. Guiding the graph search

We use the squared euclidean distance for all distance
calculations during mapping, planning, and smoothing:

(dEuclidean(x, y))
2 =

n∑

i=1

(xi − yi)
2 (10)

To establish a baseline for safe trajectory planning, we first
defined a purely safety-oriented objective that maximizes dis-
tance from obstacles. Instead of modifying g(n) in an additive
way, we employ a multiplicative strategy: f(n) = g(n) · h(n).
Let’s define a safeness-estimation function s(n) = dobst(n)

−2,
using the inverse square of the distance to the nearest obstacle.
Substituting s(n) as our heuristic yields:

f(n) = g(n) · s(n) = g(n) · dobst(n)−2 =
g(n)

dobst(n)2
(11)

This formulation is similar to potential field methods, where
obstacles exert repelling forces [13]. However, the safest paths
tend to be unnecessarily long, which is undesirable for battery-
limited UAVs. To address this, we balance safety with goal-
seeking by combining both objectives:

f(n) = g(n) · (s(n) + d(n, t)) (12)

Initial testing validated our concepts, as visualized in Figure 3.
The leftmost graph shows A*, the middle one displays the
initial safe algorithm, while the result of F* is on the right.

(a) A* (b) safest path (c) F*

Figure 3: Examples for different path shapes: A* (left), safest
path (middle), and our approach F* (right). Whilst both our
approaches show similar performance (i.e., safe distances),
from a computational perspective F* is more efficient.

C. Multi-Objective F*
Initial extension concepts for our F* formulation show the

possibility of replacing s(n) with a weighted multi-objective
function. Let si(n) denote the i-th objective function and wi its
corresponding weight. The combined safety function becomes:

s(n) =
n∑

i=0

wi · si(n)

subject to 0 ≤ wi ≤ 1,
n∑

i=0

wi = 1

(13)

This formulation enables flexible multi-objective planning,
though development is ongoing and results are preliminary.

D. Variable trajectory smoothing
While Catmull-Rom splines showed excellent smoothing

results for most paths during initial testing, empirical tests
revealed that simple moving averages with small window sizes
(e.g., 3–5) provided a favorable trade-off between smoothing
and computation time. We opted to dynamically calculate the
window size as one sixth the number of points in the input
path, with a minimum bound of 2.

(a) Three-Stage Test Map (b) Phase 1 (c) Phase 2 (d) Phase 3

Figure 4: Simplified visualization of our Test Map, and the octree expansion after each phase of map exploration.

VII. EVALUATION

To evaluate the behavior and performance of the presented
planning strategies under stable and repeatable conditions,
we constructed a synthetic test map, enabling systematic
exploration and benchmarking. This allowed us to validate the
core functionality of our algorithms and provide a consistent
basis for performance comparisons.

A. Experimental Setup and Analysis

The test map as shown in Figure 4a was designed to gradually
expand in three phases, enabling an incremental evaluation
of map growth and its impact on planning performance. This
structure helps isolate the performance contributions of partial
updates, spatial complexity, and resolution of the underlying
data structure. As the system explores the map, the octree-based
data representation adapts accordingly, building a sparse graph
network. This evolution is visualized in a slightly simplified
manner in Figure 4. Each planning iteration compares the
performance of the Grid-based and octree-based maps across
several metrics, including pathfinding runtime, graph size, path
length, and Nearest-Neighbour Search (NNS) performance.

All of these tests were conducted on an Intel® Core™ i9-
13900KF (single-threaded) with 32GB of RAM inside a Python
3.10 virtual environment. For validation purposes, we show
results for our test scenario in Table I:

1) The first phase initializes the basic structure of the
environment. Octree-based planning yields substantial
gains in runtime and memory efficiency, at the cost
of slight accuracy loss in NNS. However, this distance
deviation is smaller than 50% of the voxel size, leaving
the results accurate enough for most practical use cases.
Notably, F* exhibits a substantial performance boost
when paired with octree representations. Although A*
also benefits from octree usage, the improvement is less
pronounced compared to F*.

2) In phase two, with further map expansion, the octree
continues to scale well, maintaining efficient pathfinding
runtimes. Despite the growing graph size, the octree-
based approach preserves its speed advantage due to its
hierarchical representation. The performance gap between
A* and F* remains consistent with observations from the
first Phase.

3) In the final stage at phase three, the environment reaches
its maximum planned complexity. At this point, the grid-
map demonstrates better graph conversion performance
due to minimal changes in the precomputed nodes.
However, the octree continues to outperform in both
pathfinding and NNS. As complexity increases, F* loses
its performance advantage, but the absolute difference
compared to A* remains within a few milliseconds.

Table I: Full Overview of our experimental test results

Category Metric Grid-Map Octree

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

Map Generation Runtime 76.7 0.08 0.003 49.4 0.01 0.09

Nearest-Neighbour Runtime 4.86 6.18 6.18 0.17 0.19 0.19
Accuracy [%] 100 100 100 90.5 84.1 84.1

Graph Conversion Runtime 759 1916 8.29 153 125 101
Node-Count 3730 6553 6248 715 951 1278

A* Pathfinding Runtime 9.37 15.4 15.6 2.55 3.26 4.60
Path Length 42.5 38.4 42.8 46.7 49.9 54.0

F* Pathfinding Runtime 58.5 66.1 56.4 3.09 3.88 6.41
Path Length 49.8 45.4 47.8 48.2 50.6 56.1

All runtimes in milliseconds, and path lengths in meters.

(a) Unsmoothed A* in a
Grid-Map

(b) F* in an Octree with
moving average smoothing

Figure 5: Comparison of base A* in a Grid-Map and smoothed
F* in an octree. Where A* tightly hugs the wall to reduce
path length, F* keeps a safe distance, allowing for trajectory
smoothing with minimal risk of collisions.

B. Learned Lessons

The hierarchical structure of octrees, combined with our
pathfinding and Nearest-Neighbour Search (NNS) optimizations
applied during map construction, shows to be highly effective.
Based on our experimental results, we highlight the following
key findings:

• Grid maps incur significantly higher conversion and update
costs, correlating directly with node count. In contrast,
octrees exhibit efficient scalability with increasing envi-
ronmental complexity.

• Across all test scenarios and iterations, octree-based
planning consistently achieves significantly lower NNS
and pathfinding runtimes for both A-Star (A*) and F-Star
(F*), often by an order of magnitude.

• Reduced graph complexity allows F* to approach A*
runtimes, making it well-suited for performance-sensitive
tasks when combined with hierarchical representations.

• Trajectory smoothing on paths generated by A* can result
in collisions with obstacles, as the applied smoothing
algorithms are not obstacle-aware, and A* frequently
selects paths that closely hug obstacles. In comparison,
we observe that F* generates highly suitable paths for our
application, as visualized in Figure 5.

C. Simulation-Based Validation

To validate the practical feasibility of our planner, we also
ran some simulated experiments, conducted in a previously
unseen environment using ©Microsoft AirSim v1.8.1.

The simulation setup employed the default configuration
parameters, with the addition of a multirotor UAV equipped
with two LiDAR sensors, one providing 360-degree horizontal
scanning and the other directed downward for floor mapping.
We observed that variations in sensor field of view had only
marginal effects on pathfinding, provided they were selected
appropriately relative to the mapping resolution.

The drone successfully navigated the unknown environment
while continuously building and updating the internal map
representation in near real-time. During the mission, the planner
recalculated the path multiple times in response to newly
discovered obstacles in the environment. To execute the re-
planning step, the drone briefly paused, ensuring that it never
proceeded blindly into unmapped or unsafe areas.

VIII. CONCLUSION

This work explored real-time path planning and spatial
environment representation for UAVs, specifically integrating
an octree structure with partial updating capabilities, and a
safety-optimized pathfinding algorithm.

Our conducted tests and simulation experiments demonstrate
the significant performance gains achieved through octree-
implementations in comparison to traditional voxel grid maps.
Its ability to represent spatial relationships hierarchically allows
for scalable resolution control, tuned to the capabilities of the
onboard sensors.

In terms of planning algorithms, we compared our F*
solution to the commonly used A* algorithm. F* benefits
greatly from the lesser complexity graphs generated by our
octree map representation, resulting in performance close to that
of A*, while providing preferable paths for our applications.

The use of a moving average for trajectory smoothing proved
highly effective, allowing for momentum preservation without
significantly deviating from the given path. While Bézier curves
lack the local control necessary to guarantee that our safety
requirements could still be met, Catmull-Rom splines provide
a valid alternative, sacrificing some performance for improved
smoothing capabilities.

REFERENCES

[1] A. Ait Saadi, A. Soukane, Y. Meraihi, A. Benmessaoud Gabis, S. Mirjalili,
and A. Ramdane-Cherif, “UAV Path Planning Using Optimization Ap-
proaches: A Survey,” Archives of Computational Methods in Engineering,
vol. 29, no. 6, pp. 4233–4284, 2022.

[2] M. Jones, S. Djahel, and K. Welsh, “Path-Planning for Unmanned
Aerial Vehicles with Environment Complexity Considerations: A Survey,”
vol. 55, no. 11, Feb. 2023.

[3] W. Liu, Z. Zheng, and K.-Y. Cai, “Bi-level programming based real-time
path planning for unmanned aerial vehicles,” Knowledge-Based Systems,
vol. 44, pp. 34–47, 2013.

[4] F. Blöchliger, M. Fehr, M. Dymczyk, T. Schneider, and R. Siegwart,
“Topomap: Topological Mapping and Navigation Based on Visual SLAM
Maps,” CoRR, vol. abs/1709.05533, 2017.

[5] R. Schnabel and R. Klein, “Octree-based Point-Cloud Compression,” in
Symposium on Point-Based Graphics, M. Botsch, B. Chen, M. Pauly,
and M. Zwicker, Eds., The Eurographics Association, 2006.

[6] S. Thrun and A. Bücken, “Integrating Grid-Based and Topological Maps
for Mobile Robot Navigation,” in AAAI/IAAI, Vol. 2, 1996.

[7] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[9] J. Yu, J. Hou, and G. Chen, “Improved Safety-First A-Star Algorithm
for Autonomous Vehicles,” in 2020 5th International Conference on
Advanced Robotics and Mechatronics (ICARM), 2020, pp. 706–710.

[10] P. Luan and N. Truong Thinh, “C2 Piecewise Cubic Bezier Curve Based
Smoothing Path for Mobile Robot,” International Journal of Mechanical
Engineering and Robotics Research, pp. 519–525, Jan. 2021.

[11] C. Yuksel, S. Schaefer, and J. Keyser, “Parameterization and Applications
of Catmull-Rom Curves,” Computer Aided Design, vol. 43, no. 7, pp. 747–
755, 2011.

[12] R. Hyndman, “Moving Averages,” in Springer-Verlag, Jan. 2010, pp. 866–
869.

[13] Y. Kitamura, T. Tanaka, F. Kishino, and M. Yachida, “3-D path planning
in a dynamic environment using an octree and an artificial potential field,”
in Proceedings 1995 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Human Robot Interaction and Cooperative Robots,
vol. 2, 1995, 474–481 vol.2.

